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Invisible mean field dynamos
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We provide examples ofi?> dynamos in spheres which generate magnetic fields that are confined to the
conductor and are therefore undetectable in the surrounding vacuum.
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The generation of planetary and stellar magnetic fields isnduction equation. Unfortunately, these conditions are not
generally ascribed to the dynamo effect through which mewuseful from a practical point of view.
chanical energy stored in the motion of a liquid conductor is Despite the presumed indetermination of the inverse prob-
converted into mechanical energfor an overview of dy- lem no example seems as yet to be known of two dynamos
namo theory, see, e.d.1]). The only probe available for vyielding identical vacuum fields. Here, we provide such an
investigation of the field generation mechanism is observaexample by presenting dynamos that produce no exterior
tion of the magnetic field in the insulating region surround-field and therefore cannot be distinguished by an external
ing the conductor. Basic theoretical models of the phenomebserver from each other or from a motionless core.
enon solve the induction equation for the magnetic field |n the context of invisible dynamos one should note a
assuming a prescribed velocity field in a homogeneous liquigheorem by Bondi and Gold predicting that motion of a per-
COI’IdUCtOI’ f|”|ng a Sphere. Furthel’ Simp|ificati0n iS aChieVedfecﬂy Conducting fluid in a S|mp|y connected domain like a
if the fluid flow occurs on typical length scales much smallersphere cannot generate an exterior field with finite dipole
than the radius of the sphere. One then arrives at “mean fielghoment from an infinitesimal seed fieJ8]. This behavior
electrodynamics’[2]. In this paper we prove the existence of 54 5150 been found within the approximations of mean field
SO'“F'OnS of the_ mean fu_eld dynamo equation that are Zer%lectrodynamic:ﬁ?] and corresponds to the vanishing of the
o_uts@e the region opcuped by the conductor‘.‘.Th.e.ma,g,;neusacuum magnetic field if the magnetic Reynolds number of
field is thus trapped inside the conductor and “invisible” for h tion inside the sphere tends to infinity. as observed in
any exterior observer. A dynamo operating in a celestiaf € mo . : P A .

numerical simulation§8]. However, at any finite conductiv-

body might therefore go completely unnoticed. jty, there is a finite field strength in the vacuum and, there-

The absence of sizable fields on Mars and Venus is gert h q d i invisible d
erally not interpreted in terms of invisible dynamos. It is '0r€: these dynamos do not qualify as invisible dynamos.

rather thought that these planets are not dynamos at all, byt 1€ basic problem connected with invisible dynamos is
Mars appears to have possessed a magnetic field in the pd8¢ fact that they are solutions of an overdetermined
[3]. However, another planet may be of interest here. satboundary-value problem. The usual kinematic dynamo prob-
urn’s magnetic field has dipole, quadrupole, and octupoldem consists in finding a nondecayirig time) solution of
contributions which are axisymmetric according to satellitethe induction equation with prescribed velocity field in a
measurements. No departure from axisymmetry has actualgiven domainS of liquid conductor, which matches an exte-
been detected. Yet no strictly axisymmetric dynamo fieldrior vacuum field decreasing at least as fast as a dipole field
exists according to Cowling’s theorem so that nonaxisym-at infinity. This is a well-posed problem in entire space. Re-
metric components of the low multipoles are likely to be quiring a vanishing vacuum field reduces the problem to a
hidden in Saturn’s conducting domdi]. boundary-value problem i, however, with more conditions

Invisible dynamos are one facet of the following broaderon dS than in the standard case. The question arises for
(inverse problem: The observer seeks to determine the mowhich velocity fields and for which domains the overdeter-
tion of the liquid conductor from measurements of the mag-mined boundary-value problem still has solutions. In the case
netic field in the surrounding vacuum. This problem seems t@f the induction equation this question is not easy to answer
be highly underdetermined since the exterior magnetic fieldhumerically because solutions are necessarily three dimen-
enforces boundary values only for the poloidal magneticsional and need a large number of components in a spectral
field component in the conducting domain. Thus, the toroidalepresentation. The signature of an invisible dynamo in this
magnetic field component as well as the flow field have to bdramework is a component vector being exactly zero. Since
deduced from these data. Moreover, even if the magnetione can never exactly find a root numerically, it becomes
field is completely known the flow field cannot be deter- tedious to demonstrate the mere existence of a root of a large
mined unambiguously since only the component perpendicusystem of equations. In one dimension, a sign reversal of a
lar to the magnetic field enters the dynamo equation. A stepontinuous function unambiguously identifies a root. In the
toward the solution of the inverse problem has been undem@pplication below, the presence of a zero of a system of two
taken by Lortz[5]: In the case of a given steady magnetic equations in two unknowns is proved by showing that the
field whose field lines are constrained onto nested toroidatero contour lines of the two functions cross. In this two-
surfaces necessary conditions have been formulated for thdimensional case, it is once again enough to consider only
existence of a well-defined flow field satisfying the steadythe signs of the functions.
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In the framework of mean field electrodynamics the mearpurely toroidal dynamos are possible for neither the mean
electromotive force is parametrized in the simplest case by field equation with general scalar field nor the induction
single scalar quantityr(x). The corresponding mean field equation[9].
equation leads in the case of invisible solutions likewise to The stationary monopole casé, €0, | =0) is amenable
an overdetermined boundary-value problem. Dynamo soluto analytical treatment. Eliminating the toroidal field and in-
tions in general are, however, much easier to fl@dwling’s  troducing the variablex:=1—r as well as the field®(x)
theorem, for example, does not applyf, moreover, in a :=py(r), @(x):=a(r) one obtains from Eq<¢3) and(4)
spherical domairx is assumed to depend only on the radial
direction the problem even reduces to a one-dimensional (—P”
problem. This situation is considered in the following. First, @

a special(unphysical case is treated fully analytically. It

serves to demonstrate in principle the solvability of the over{thé prime meansd/dx) with the boundary conditions
determined problem and to display the kind of constraints thé(0)=P’(0)=P"(0)=P(1)=P"(1)=0. In deriving the

« field has to satisfy. The existence of invisible dynamos inboundary conditiong(0)+0, @(1)#0 has been assumed.
the general case is then demonstrated on a numerical baskirther simplification is achieved by introducing the variable
Finally, critical magnetic Reynolds numbers for these dynaQ(x) by P(x)= [3Q(X)d% and integrating Eq(5) once:

mos are determined and compared to those of ordifasy
ible) dynamos.

Invisible mean field dynamos in the unit sph&evith a

pure a? mechanism are solutions of the boundary-value N )
problem The boundary conditions transform int@(0)=Q’(0)

=Q’'(1)=0 and the mean value conditiofﬁQ(x)dx=O.
#B—AB+VX(aB)=0, V-B=0 in S, (18  The complete solution of Ed6) reads

”

+(aP’)'=0 (5

!

+aQ=C. (6)

1 I
=Q
o

B=0 on &S. (1b) Q(x)=Asiny(x)+ B cosy(x) + C[siny(x) Siny(x)
Using spherical polar coordinates, 0,¢), a=«a(r) is as- eosy(x)Cosyx)] "

sumed to be a function afonly and the magnetic fielB is  yjth y(x) = [Sa(X)d%, Siny(x):=[%cosy(®)d%, Cosy)
decomposed into its poloidal and toroidal parts and expanded. _ [¥siny(®)dx and arbitrary constanté and B. The

in spherical harmonics: boundary conditiongQ(0)=Q’(0)=0 are satisfied forA
=B=0, whereas the remaining conditions impose the fol-
B(x,H)=VXVX| > pp(r,t)p{n(cosg)eimqﬁf) lowing integral conditions oiy(x) or a(x), respectively:
I,m

siny(1)Cosy1)—cosy(1)Siny(1)=0, (8)
+V X

> t{‘“(r,t)PP‘(cosa)eim¢f) 2 L
L f [siny(x)Siny(x) + cosy(x)Cosyx)Jdx=0.  (9)
0

with P{"(cosé) denoting the associated Legendre functions

andf the unit vector in the radial direction. With the repre- Equations(8) and(9) are in fact satisfied for a large class of
sentation2) for B Eq. (1a) becomes equivalent to the system functionsy(x). Assume, for example;(x) to be symmetric

of equations for the componens'(r,t) andt"(r,t): with respect tox=1/2, y(x)=y(1—x); then siny(x) and
cosy(x) are symmetric and the functior&ny(x) :=Siny(x)
ap"—Dip{"+ at"=0, —1/2Siny(1) andCosy() = Cosy(x) — 1/2Cosy(1) are anti-

3 symmetric. Rewriting conditioit9) in the form
ot = Ditf"— dyad,p"— @D p["=0

1 - -
with D,:=a,2—l(l +1)/r2. The boundary conditions read fo [siny(x)Siny(x) +cosy(x)Cosyx) Jdx=0

p'=t"=0 atr=0, (48  shows that this condition is satisfied. Because ygD)
=y(1)=0 condition(8) reduces now to Siny(H 0, which
p'=a,p"=t"=0 atr=1. (4b) s satisfied, for example, ¥(x) has in addition the symme-

try y(1/2—x)+y(x)=(2n—1)7 on the interval (0, 1/2
The conditions(4a) ensure a well-defined magnetic field at with n being an arbitrary positive integer. The function
the origin wherea$4b) derives from the boundary condition y(x)=2mx on (0, 1/2 and 27(1—x) on (1/2, 1) obviously
(1b). Equationg3) do not depend om; thus the superscript has both symmetriedor n=1). It corresponds to the func-
is henceforth omitted. tion a(r) shown in Fig. 1. Smooth functiona(r) are of

Considering the boundary conditions a prime candidateourse also admissible.

for an invisible dynamo would be a purely toroidal field. = Numerical treatment is necessary in order to find solutions
This possibility is obviously ruled out by Eq$3). In fact,  for arbitraryl. For « we choose two simple profile functions
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FIG. 1. Profiles ofa(r): The (normalized step function found
in the analytical treatmernitlashedland a continuous approximation
to the step function used in Figs. 2 and 3 bel@wolid line, profile
a; with 6=10, a¢y=1, andry=0.5).

parametrized byw,, the strength of thex effect, and an FIG. 3. Stability boundarysolid line) of a? dynamos witha
additional parameterrf or cy) determining the shape. The given by agtanfj—10(1—r—rg)]. The dot-dashed and dashed
first profile a;= agtani — &1—r—rg)] imitates(in the limit ~ curves correspond to zeros pf(r =0) andt,(r=0), respectively,

6— ) the step function used fdr=0; the second one, for 1=1.
=gl (1—cg)sinar—cysin2ar] varies for Oscy<1 be-
tween a positive function and one with a sign reversal. initial conditions for a fourth order Runge-Kutta integration

In order to find invisible dynamos we focus on time inde-that progressep, andt, fromr=1 tor=0. In the case of
pendent solutions withp,(r=1)=p/(r=1)=t,(r=1)=0, profile ¢, , the boundary conditions at=0 are satisfied only
which ensures confinement of the magnetic field. Since théor special choices ofy and ag. p|(r=0) andt,(r=0) are
problem is linear irp, andt,, one can arbitrarily choose the the two functions ok, andr, whose roots are being sought.

normalizationt; (r=1)=1. These four conditions serve as Crossings of the zero contour lines pf(r=0) andt(r
=0) in the («q,rp) plane correspond to stationary solutions

[ R I B~ BRI of the mean field equation with zero exterior field.
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FIG. 2. The dot-dashed and dashed curves correspond to zero (04 0
of po(r=0) andty(r=0) in the (aq,ry) plane, respectively, ob-
tained with the integration procedure described in the texis FIG. 4. Same as Fig. 3 fott= aq[ (1—cq)Sinat —cySin 2ar ]
given by a= agtanf —10(1—r—rg)]. andl=2.
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Figure 2 shows the cask=0 considered analytically netic field. The stability boundary fdre=2 is again included
above for the profilex; with §=10. A solution of the over- in Fig. 4. Forcy<0.6, fields withl =1 are actually preferred
determined problem exists in the vicinity 6=0.5, ay  at onset but they all penetrate the vacuum region.
=2m. The agreement with the solution found analytically  In summary, it has been demonstrated that there are solu-
improves if§is increased. Note that the other solutions con-tions of the mean field dynamo equation in a sphere that are
tained in Fig. 2 correspond to further symmetric solutions agero in the vacuum region. In particular, there are solutions
well as to nonsymmetric ones. that are invisible at the onset of dynamo action. The question

Figure 3 repeats the same study for the physically morarises, of course, whether invisible solutions of the induction
relevant casé= 1. The most interesting solution is the one atequation also exist. A positive answer can be expected since
[=1,ry=0.412,0o=7.92, which will be shown below to lie the mean field equation derives from the induction equation
on the stability boundary. under the assumption of scale separation in the velocity field

The profile ¢, is investigated in Fig. 4, this time fdr ~and—from a mathematical point of view—the overdeter-
=2. The results confirm the intuitive expectations nourishednined character of the boundary-value problem is the same
above. In order to obtain an invisible dynamo solution, comfor both equations. A direct translation from a mean field
parable volumes of the sphere must be occupied leffect  dynamo to a real dynamo would consist in choosing a veloc-
of each sign. Accordingly, the profile, yields invisible so- ity field that approximately reproduces the effect used
lutions for values of ; in a band around 0.5, and, requires  above. However, a small scale magnetic field would also
a ¢ larger than roughly 0.6 for confined dynamo modes toresult which in general is visible from the outside. On the
exist. other hand, that field can be made arbitrarily small in com-

For any value of  or ¢, there is a critical value ofg at  parison with the main field. Suppose that eddies of typical
which dynamo action starts. From the observational point ofizel, and typical velocityu, exist in a fluid of diffusivity\.
view, solutions of the induction equation of the invisible type The ratio of small scale field to large scale field is then
are of interest only if they lie on the stability boundary, i.e., given in order of magnitude byb|/|B|~uglq/\, whereas
if there is no other mode that grows as time goes on at thez~u(2)lol)\ [1]. By fixing @ and choosing a smallj one can
samer, or cy. Only in this case do all magnetic modes obtain arbitrarily small ratiogb|/|B|. A smalll, is of course
decay except the one that is hidden inside the conductor. Fampractical for numerical computations.
the profilee,, it has been checked that the onset for dynamo In addition, it is difficult to convincingly prove by nu-
action occurs fot =1 with a nonoscillatory magnetic field. merical means the existence of a strictly invisible dynamo in
The corresponding stability boundary obtained with a stanspherical geometry due to the large number of equations that
dard shooting method is also shown in Fig. 3. A mode crossneed to be satisfied simultaneougls was already men-
ing occurs forry near 0.55, which explains the segment oftioned in the Introduction The investigation of cylindrical
horizontal line in the stability curve. For this profile, a value dynamos with simple flow field is therefore more appropri-
of ry indeed exists for which dynamo action starts with anate. Helical flows of Ponomarenko typ&0], in which field
invisible field. The same holds true at nearby parameters. Famplification is concentrated on some isolated surfaces, have
instance, fora=agtan{—2[(1-r)—rq]} an invisible dy- been examined but without success. More general flows that
namo occurs at=1, ry=0.426, andwy=15.18. Profileg, allow for a continuous radial variation of the flow field are
on the other hand always leads to onset with a visible mageurrently under study.
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