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Invisible mean field dynamos
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We provide examples ofa2 dynamos in spheres which generate magnetic fields that are confined to the
conductor and are therefore undetectable in the surrounding vacuum.
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The generation of planetary and stellar magnetic field
generally ascribed to the dynamo effect through which m
chanical energy stored in the motion of a liquid conducto
converted into mechanical energy~for an overview of dy-
namo theory, see, e.g.,@1#!. The only probe available fo
investigation of the field generation mechanism is obser
tion of the magnetic field in the insulating region surroun
ing the conductor. Basic theoretical models of the pheno
enon solve the induction equation for the magnetic fi
assuming a prescribed velocity field in a homogeneous liq
conductor filling a sphere. Further simplification is achiev
if the fluid flow occurs on typical length scales much smal
than the radius of the sphere. One then arrives at ‘‘mean fi
electrodynamics’’@2#. In this paper we prove the existence
solutions of the mean field dynamo equation that are z
outside the region occupied by the conductor. The magn
field is thus trapped inside the conductor and ‘‘invisible’’ f
any exterior observer. A dynamo operating in a celes
body might therefore go completely unnoticed.

The absence of sizable fields on Mars and Venus is g
erally not interpreted in terms of invisible dynamos. It
rather thought that these planets are not dynamos at all
Mars appears to have possessed a magnetic field in the
@3#. However, another planet may be of interest here. S
urn’s magnetic field has dipole, quadrupole, and octup
contributions which are axisymmetric according to satel
measurements. No departure from axisymmetry has actu
been detected. Yet no strictly axisymmetric dynamo fi
exists according to Cowling’s theorem so that nonaxisy
metric components of the low multipoles are likely to
hidden in Saturn’s conducting domain@4#.

Invisible dynamos are one facet of the following broad
~inverse! problem: The observer seeks to determine the m
tion of the liquid conductor from measurements of the m
netic field in the surrounding vacuum. This problem seem
be highly underdetermined since the exterior magnetic fi
enforces boundary values only for the poloidal magne
field component in the conducting domain. Thus, the toroi
magnetic field component as well as the flow field have to
deduced from these data. Moreover, even if the magn
field is completely known the flow field cannot be dete
mined unambiguously since only the component perpend
lar to the magnetic field enters the dynamo equation. A s
toward the solution of the inverse problem has been un
taken by Lortz@5#: In the case of a given steady magne
field whose field lines are constrained onto nested toro
surfaces necessary conditions have been formulated fo
existence of a well-defined flow field satisfying the stea
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induction equation. Unfortunately, these conditions are
useful from a practical point of view.

Despite the presumed indetermination of the inverse pr
lem no example seems as yet to be known of two dynam
yielding identical vacuum fields. Here, we provide such
example by presenting dynamos that produce no exte
field and therefore cannot be distinguished by an exte
observer from each other or from a motionless core.

In the context of invisible dynamos one should note
theorem by Bondi and Gold predicting that motion of a p
fectly conducting fluid in a simply connected domain like
sphere cannot generate an exterior field with finite dip
moment from an infinitesimal seed field@6#. This behavior
has also been found within the approximations of mean fi
electrodynamics@7# and corresponds to the vanishing of th
vacuum magnetic field if the magnetic Reynolds number
the motion inside the sphere tends to infinity, as observe
numerical simulations@8#. However, at any finite conductiv
ity, there is a finite field strength in the vacuum and, the
fore, these dynamos do not qualify as invisible dynamos

The basic problem connected with invisible dynamos
the fact that they are solutions of an overdetermin
boundary-value problem. The usual kinematic dynamo pr
lem consists in finding a nondecaying~in time! solution of
the induction equation with prescribed velocity field in
given domainS of liquid conductor, which matches an exte
rior vacuum field decreasing at least as fast as a dipole fi
at infinity. This is a well-posed problem in entire space. R
quiring a vanishing vacuum field reduces the problem t
boundary-value problem inS, however, with more conditions
on ]S than in the standard case. The question arises
which velocity fields and for which domains the overdete
mined boundary-value problem still has solutions. In the c
of the induction equation this question is not easy to ans
numerically because solutions are necessarily three dim
sional and need a large number of components in a spe
representation. The signature of an invisible dynamo in t
framework is a component vector being exactly zero. Sin
one can never exactly find a root numerically, it becom
tedious to demonstrate the mere existence of a root of a l
system of equations. In one dimension, a sign reversal
continuous function unambiguously identifies a root. In t
application below, the presence of a zero of a system of
equations in two unknowns is proved by showing that
zero contour lines of the two functions cross. In this tw
dimensional case, it is once again enough to consider o
the signs of the functions.
©2001 The American Physical Society01-1
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In the framework of mean field electrodynamics the me
electromotive force is parametrized in the simplest case b
single scalar quantitya(x). The corresponding mean fiel
equation leads in the case of invisible solutions likewise
an overdetermined boundary-value problem. Dynamo s
tions in general are, however, much easier to find~Cowling’s
theorem, for example, does not apply!. If, moreover, in a
spherical domaina is assumed to depend only on the rad
direction the problem even reduces to a one-dimensio
problem. This situation is considered in the following. Fir
a special~unphysical! case is treated fully analytically. I
serves to demonstrate in principle the solvability of the ov
determined problem and to display the kind of constraints
a field has to satisfy. The existence of invisible dynamos
the general case is then demonstrated on a numerical b
Finally, critical magnetic Reynolds numbers for these dy
mos are determined and compared to those of ordinary~vis-
ible! dynamos.

Invisible mean field dynamos in the unit sphereS with a
pure a2 mechanism are solutions of the boundary-va
problem

] tB2DB1“3~aB!50, “•B50 in S, ~1a!

B50 on ]S. ~1b!

Using spherical polar coordinates (r ,u,f), a5a(r ) is as-
sumed to be a function ofr only and the magnetic fieldB is
decomposed into its poloidal and toroidal parts and expan
in spherical harmonics:

B~x,t !5“3“3S (
l ,m

pl
m~r ,t !Pl

m~cosu!eimf r̂ D
1“3S (

l ,m
tl
m~r ,t !Pl

m~cosu!eimf r̂ D ~2!

with Pl
m(cosu) denoting the associated Legendre functio

and r̂ the unit vector in the radial direction. With the repr
sentation~2! for B Eq. ~1a! becomes equivalent to the syste
of equations for the componentspl

m(r ,t) and t l
m(r ,t):

] tpl
m2Dlpl

m1at l
m50,

~3!
] tt l

m2Dlt l
m2] ra] rpl

m2aDlpl
m50

with Dlª] r
22 l ( l 11)/r 2. The boundary conditions read

pl
m5t l

m50 at r 50, ~4a!

pl
m5] rpl

m5t l
m50 at r 51. ~4b!

The conditions~4a! ensure a well-defined magnetic field
the origin whereas~4b! derives from the boundary conditio
~1b!. Equations~3! do not depend onm; thus the superscrip
is henceforth omitted.

Considering the boundary conditions a prime candid
for an invisible dynamo would be a purely toroidal fiel
This possibility is obviously ruled out by Eqs.~3!. In fact,
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purely toroidal dynamos are possible for neither the me
field equation with general scalara field nor the induction
equation@9#.

The stationary monopole case (] t[0, l 50) is amenable
to analytical treatment. Eliminating the toroidal field and i
troducing the variablexª12r as well as the fieldsP(x)
ªp0(r ), ã(x)ªa(r ) one obtains from Eqs.~3! and ~4!

S 1

ã
P9D 9

1~ ãP8!850 ~5!

~the prime meansd/dx) with the boundary conditions
P(0)5P8(0)5P9(0)5P(1)5P9(1)50. In deriving the
boundary conditionsã(0)Þ0, ã(1)Þ0 has been assumed
Further simplification is achieved by introducing the variab
Q(x) by P(x)5*0

xQ( x̃)dx̃ and integrating Eq.~5! once:

S 1

ã
Q8D 8

1ãQ5C. ~6!

The boundary conditions transform intoQ(0)5Q8(0)
5Q8(1)50 and the mean value condition*0

1Q(x)dx50.
The complete solution of Eq.~6! reads

Q~x!5A siny~x!1B cosy~x!1C@siny~x!Siny~x!

1cosy~x!Cosy~x!# ~7!

with y(x)ª*0
xã( x̃)dx̃, Siny(x)ª*0

x cosy(x̃)dx̃, Cosy(x)
ª2*0

x siny(x̃)dx̃, and arbitrary constantsA and B. The
boundary conditionsQ(0)5Q8(0)50 are satisfied forA
5B50, whereas the remaining conditions impose the f
lowing integral conditions ony(x) or a(x), respectively:

siny~1!Cosy~1!2cosy~1!Siny~1!50, ~8!

E
0

1

@siny~x!Siny~x!1cosy~x!Cosy~x!#dx50. ~9!

Equations~8! and~9! are in fact satisfied for a large class
functionsy(x). Assume, for example,y(x) to be symmetric
with respect tox51/2, y(x)5y(12x); then siny(x) and
cosy(x) are symmetric and the functionsSiny(x)ªSiny(x)
21/2Siny(1) andCosy(x)5Cosy(x)21/2Cosy(1) are anti-
symmetric. Rewriting condition~9! in the form

E
0

1

@siny~x!Siny~x!1cosy~x!Cosy~x!#dx50

shows that this condition is satisfied. Because ofy(0)
5y(1)50 condition~8! reduces now to Siny(1)50, which
is satisfied, for example, ify(x) has in addition the symme
try y(1/22x)1y(x)5(2n21)p on the interval ~0, 1/2!
with n being an arbitrary positive integer. The functio
y(x)52px on ~0, 1/2! and 2p(12x) on ~1/2, 1! obviously
has both symmetries~for n51). It corresponds to the func
tion a(r ) shown in Fig. 1. Smooth functionsa(r ) are of
course also admissible.

Numerical treatment is necessary in order to find solutio
for arbitrary l. For a we choose two simple profile function
1-2
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BRIEF REPORTS PHYSICAL REVIEW E 63 037301
parametrized bya0 , the strength of thea effect, and an
additional parameter (r 0 or c0) determining the shape. Th
first profile a I5a0 tanh@2d(12r2r0)# imitates~in the limit
d→`) the step function used forl 50; the second onea II
5a0@(12c0)sinpr2c0 sin 2pr# varies for 0<c0<1 be-
tween a positive function and one with a sign reversal.

In order to find invisible dynamos we focus on time ind
pendent solutions withpl(r 51)5pl8(r 51)5t l(r 51)50,
which ensures confinement of the magnetic field. Since
problem is linear inpl andt l , one can arbitrarily choose th
normalizationt l8(r 51)51. These four conditions serve a

FIG. 2. The dot-dashed and dashed curves correspond to z
of p0(r 50) and t0(r 50) in the (a0 ,r 0) plane, respectively, ob
tained with the integration procedure described in the text.a is
given bya5a0 tanh@210(12r 2r 0)#.

FIG. 1. Profiles ofa(r ): The ~normalized! step function found
in the analytical treatment~dashed! and a continuous approximatio
to the step function used in Figs. 2 and 3 below~solid line, profile
a I with d510, a051, andr 050.5).
03730
e

initial conditions for a fourth order Runge-Kutta integratio
that progressespl and t l from r 51 to r 50. In the case of
profile a I , the boundary conditions atr 50 are satisfied only
for special choices ofr 0 anda0 . pl(r 50) andt l(r 50) are
the two functions ofa0 andr 0 whose roots are being sough
Crossings of the zero contour lines ofpl(r 50) and t l(r
50) in the (a0 ,r 0) plane correspond to stationary solutio
of the mean field equation with zero exterior field.

ros

FIG. 3. Stability boundary~solid line! of a2 dynamos witha
given by a0 tanh@210(12r 2r 0)#. The dot-dashed and dashe
curves correspond to zeros ofpl(r 50) andt l(r 50), respectively,
for l 51.

FIG. 4. Same as Fig. 3 fora5a0@(12c0)sinpr2c0 sin 2pr#
and l 52.
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 63 037301
Figure 2 shows the casel 50 considered analytically
above for the profilea I with d510. A solution of the over-
determined problem exists in the vicinity ofr 050.5, a0
52p. The agreement with the solution found analytica
improves ifd is increased. Note that the other solutions co
tained in Fig. 2 correspond to further symmetric solutions
well as to nonsymmetric ones.

Figure 3 repeats the same study for the physically m
relevant casel 51. The most interesting solution is the one
l 51, r 050.412,a057.92, which will be shown below to lie
on the stability boundary.

The profilea II is investigated in Fig. 4, this time forl
52. The results confirm the intuitive expectations nourish
above. In order to obtain an invisible dynamo solution, co
parable volumes of the sphere must be occupied bya effect
of each sign. Accordingly, the profilea I yields invisible so-
lutions for values ofr 0 in a band around 0.5, anda II requires
a c0 larger than roughly 0.6 for confined dynamo modes
exist.

For any value ofr 0 or c0 there is a critical value ofa0 at
which dynamo action starts. From the observational poin
view, solutions of the induction equation of the invisible ty
are of interest only if they lie on the stability boundary, i.
if there is no other mode that grows as time goes on at
samer 0 or c0 . Only in this case do all magnetic mode
decay except the one that is hidden inside the conductor.
the profilea I , it has been checked that the onset for dyna
action occurs forl 51 with a nonoscillatory magnetic field
The corresponding stability boundary obtained with a st
dard shooting method is also shown in Fig. 3. A mode cro
ing occurs forr 0 near 0.55, which explains the segment
horizontal line in the stability curve. For this profile, a valu
of r 0 indeed exists for which dynamo action starts with
invisible field. The same holds true at nearby parameters.
instance, fora5a0 tanh$22@(12r)2r0#% an invisible dy-
namo occurs atl 51, r 050.426, anda0515.18. Profilea II
on the other hand always leads to onset with a visible m
e,

-

a
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netic field. The stability boundary forl 52 is again included
in Fig. 4. Forc0,0.6, fields withl 51 are actually preferred
at onset but they all penetrate the vacuum region.

In summary, it has been demonstrated that there are s
tions of the mean field dynamo equation in a sphere that
zero in the vacuum region. In particular, there are solutio
that are invisible at the onset of dynamo action. The ques
arises, of course, whether invisible solutions of the induct
equation also exist. A positive answer can be expected s
the mean field equation derives from the induction equat
under the assumption of scale separation in the velocity fi
and—from a mathematical point of view—the overdete
mined character of the boundary-value problem is the sa
for both equations. A direct translation from a mean fie
dynamo to a real dynamo would consist in choosing a vel
ity field that approximately reproduces thea effect used
above. However, a small scale magnetic field would a
result which in general is visible from the outside. On t
other hand, that field can be made arbitrarily small in co
parison with the main field. Suppose that eddies of typi
sizel 0 and typical velocityu0 exist in a fluid of diffusivityl.
The ratio of small scale fieldb to large scale fieldB is then
given in order of magnitude byubu/uBu;u0l 0 /l, whereas
a;u0

2l 0 /l @1#. By fixing a and choosing a smalll 0 one can
obtain arbitrarily small ratiosubu/uBu. A small l 0 is of course
inpractical for numerical computations.

In addition, it is difficult to convincingly prove by nu-
merical means the existence of a strictly invisible dynamo
spherical geometry due to the large number of equations
need to be satisfied simultaneously~as was already men
tioned in the Introduction!. The investigation of cylindrical
dynamos with simple flow field is therefore more approp
ate. Helical flows of Ponomarenko type@10#, in which field
amplification is concentrated on some isolated surfaces, h
been examined but without success. More general flows
allow for a continuous radial variation of the flow field a
currently under study.
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